想要做大数据相关的工作,需要学习哪些技术知识?

广告位

数据又称黑暗数据,是指人脑无法处理的海量数据聚合成的信息资产,在民生、IT、金融、农业、通信等方面都有广泛应用…

数据又称黑暗数据,是指人脑无法处理的海量数据聚合成的信息资产,在民生、IT、金融、农业、通信等方面都有广泛应用。未来5年大数据行业呈井喷趋势,人才需求火爆,2019年大数据人才缺口更是高达1000万。以后想要做大数据相关的工作,需要学习哪些技术知识?

罗马不是一天建成的,大数据工程师也不是短时间能锻造的。想要成为大数据开发工程师,也要看你是否骨骼惊奇,天赋过人!在学习大数据之前,你还需要有一定的基础!

一、学习大数据需要的基础

1、java SE、EE(SSM)

90%的大数据框架都是Java写的

2、MySQL

SQL on Hadoop

3、Linux

大数据的框架安装在Linux操作系统上

在有了上面的技术基础支撑之后,便可以开始我们的大数据开发工程师的锻造之旅了,可以根据以下三个大的方面进行学习,当然了,中间需要穿插一些项目练习,将理论和实战相关联才能成长的很快!

大数据技术怎么学习?大数据学习方法

二、大数据技术需要学什么

1、大数据离线分析

一般处理T+1数据(T:可能是1天、一周、一个月、一年)

a、Hadoop :一般不选用新版本,踩坑难解决

(common、HDES、MapReduce、YARN)

环境搭建、处理数据的思想

b、Hive:大数据的数据仓库

经过写SQL对数据进行操作,类似于MySQL数据库的sql

c、HBase:基于HDFS的NOSQL数据库

面向列存储

d、协作框架:

sqoop(桥梁:HDFS《==》RDBMS)

flume:搜集日志文件中的信息

e、调度框架

anzkaban

了解:crotab(Linux自带)

zeus(Alibaba)

Oozie(cloudera)

f、前沿框架扩展:

kylin、impala、ElasticSearch(ES)

2、大数据实时分析

以spark框架为主

Scala:OOP(面向对象程序设计)+FP(函数是程序设计)

sparkCore:类比MapReduce

sparkSQL:类比hive

sparkStreaming:实时数据处理

kafka:消息队列

前沿框架扩展:flink

阿里巴巴:blink

3、大数据机器学习

spark MLlib:机器学习库

pyspark编程:Python和spark的结合

以上就是为大家分享的大数据技术怎么学习、大数据学习方法,希望能够对大家的大数据学习有所帮助。在这里还是要推荐下我自己建的大数据学习交流群:142974151,群里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),欢迎进阶中和进想深入大数据的小伙伴加入。

白金大数据

关于作者: 白金大数据

为您推荐

广告位

发表评论